P.M. Biava, A. Nicolini, P. Ferrari, A. Carpi and S. Sell
Abstract: The term “cancer cell reprogramming” is used to define any kind of intervention aimed at transforming cancer cells into terminally differentiated cells. Using this approach, new technologies have been applied with different methods for a more systemic approach to cancer treatment. This review reports on advances of these technologies, including our personal contributions, mainly carried out on endocrine-related cancers. Some of the interventions, aimed at reverting cancer cells into a normal phenotype, are based on the evidence that tumor development is suppressed by the embryonic microenvironment. On the basis of this rationale, experiments have been conducted using stem cell differentiation stage factors (SCDSFs) taken at different stages of development of Zebrafish embryos, oocyte extracts, or naïve human umbili- cal cord matrix derived stem cells (UMDSCs). SCDSFs induce significant growth inhibition on different tumor cell lines in vitro, likely because of increases in cell cycle regulatory molecules, such as p53 and pRb. Treatment with these factors activates apoptosis and differentiation related to caspase-3. This is achieved via p73 apoptotic-dependent pathway activa- tion with a concurrent normalization of the E-cadherin and beta-catenin ratio. Extracts from prophase amphibian oocytes could reprogram relevant epigenetic alterations in MCF-7 and HCC1954 breast cancer cell lines, while un-engineered (na- ïve) human UMDSCs attenuated growth of MDA-231 human breast carcinoma cells. A product prepared for human treatments, containing SCDF at very low doses, yielded favorable results in breast cancer and in intermediate-advanced hepatocellular carcinoma. Other reprogramming interventions used in the models of breast, prostate and ovarian cancer cell lines are described. Finally, current and future perspectives of this novel technology are discussed and a new hallmark of cancer is suggested: the loss of differentiation of cancer cells.
Abstract—Recent researches have shown the theoretical possibility of accomplishing hypercomputation in human brain by using eventual superluminal evanescent photons generated inside brain’s microtubules, using these as quantum waveguides or resonant cavities. Nevertheless, no convincing physical mechanisms has been proposed so far, able to explain the generation of such eventual superluminal photons inside microtubules and the possibility to eventually use them to manipulate quantum bits in brain. In this paper we propose a novel theoretical model according to which a confined field of faster than light photons field of suitable wavelength can arises from a spontaneous phase transition of the QED quantum vacuum occurring in the water contained inside the microtubules inner volume. It has been shown that, in the water trapped inside microtubules, there exist the conditions for the formation of a macroscopic coherent quantum state in which water molecules oscillate in phase with an e,m, field associated to a suitable electronic transition. We have also discussed some interesting consequences of these results on the possibility of hypercomputing in human brain.
Abstract—Several studies have suggested the theoretical possibility of considering human brain as supercomputer using superluminal evanescent photons eventually generated inside its microtubules to manipulate quantum bits in brain. In a previous work we have shown that in the water trapped inside brain microtubules could exist the conditions to allow a spontaneous QED quantum vacuum phase transition towards a macroscopic coherent quantum state characterized by a phased oscillation, at a rescaled frequency, between the water molecules states and an auto-generated electromagnetic field associated to a suitable electronic transition in them. As a result a self-trapped field of superradiant superluminal photons is just generated inside microtubules, characterized by an evanescent tail whose penetration depth is greater than the thickness of microtubules cylinder. In this way the interior of the brain MT cylinders can be considered as a resonant cavity for such superradiant photons whose refraction index depends on the rescaled coherent oscillation frequency. On the other hand it is already theoretical known and experimentally proven that a near perfect tunneling and amplification of evanescent electromagnetic waves is possible in a waveguide filled by a metamaterial. In this paper, basing on the consideration of some structural analogies between man-made metamaterials and some natural biological structures, we just propose the idea to interpret the inner medium of the brain microtubules cylinder as having the properties similar to those characterizing metamaterials and so able to specifically enhance the propagation of evanescent photons inside the neurons.
Foundation of Physics Research Center (FoPRC) Via Resistenza, Celico (CS) ITALY
caligiuri@foprc.org; max.caligiurigmail.com
Abstract: In this paper we show in the water confined within the inner hollow of brain microtubules there exist the conditions to allow a spontaneous QED quantum vacuum phase transition towards a macroscopic coherent quantum state, characterized by a phased oscillation between the water molecules states and an auto-generated electromagnetic field associated to a suitable electronic transition in them. As a result, a field of superradiant photons, whose frequency is smaller than the corresponding frequency belonging to a free photon with the same wavelength, is generated. This superradiant field is characterized by an evanescent tail exceeding the microtubules dimension and whose persistence against environmental decoherence is ensured by its own QED coherent behaviour.
D.Georgiev presented an idea that consciousness could be the result of quantum computation via short laser-like pulses controlling quantum gates within the brain cortex. However, he later rejected this theory because the wavelength of super radiant photon emission in the infrared spectrum is two orders of magnitude longer than the size of any microtubule cavity. To revive this idea of quantum computation within the brain, the authors propose that the substance within a microtubule cylinder has the characteristics of a metamaterial composed of sub-wavelength structures. Using this hypothesis, we can propose the mechanism for human brain based on superluminal photons.
P.M. Biava, M. Basevi, L. Biggiero, A. Borgonovo, E. Borgonovo and F. Burigana
The recent tumor research has lead scientists to recognize the central role played by cancer stem cells in sus- taining malignancy and chemo-resistance. A model of cancer presented by one of us describes the mechanisms that give rise to the different kinds of cancer stem-like cells and the role of these cells in cancer diseases. The model implies a shift in the conceptualization of the disease from reductionism to complexity theory. By exploiting the link between the agent- based simulation technique and the theory of complexity, the medical view is here translated into a corresponding compu- tational model. Two main categories of agents characterize the model, 1) cancer stem-like cells and 2) stem cell differen- tiation stage factors. Cancer cells agents are then distinguished based on the differentiation stage associated with the ma- lignancy. Differentiation factors interact with cancer cells and then, with varying degrees of fitness, induce differentiation or cause apoptosis. The model inputs are then fitted to experimental data and numerical simulations carried out. By per- forming virtual experiments on the model’s choice variables a decision-maker (physician) can obtains insights on the pro- gression of the disease and on the effects of a choice of administration frequency and or dose. The model also paves the way to future research, whose perspectives are discussed.
1Maria Cecilia Hospital, Gruppo Villa Maria (GVM) Care & Research and Ettore Sansavini Health Science Foundation, Cotignola and Lugo, Ravenna, Italy; and 2Department of
Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
Margherita Maioli, Salvatore Rinaldi, Sara Santaniello, Alessandro Castagna,
Gianfranco Pigliaru, Sara Gualini, Claudia Cavallini, Vania Fontani, and Carlo Ventura
Department of Biomedical Sciences, University of Sassari, Sassari, Italy
Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Bologna, Italy
Rinaldi Fontani Institute, Florence, Italy
§Cardiovascular Department, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
Somatic cells can be directly reprogrammed to alternative differentiated fates without first becoming stem/
progenitor cells. Nevertheless, the initial need for viral-mediated gene delivery renders this strategy unsafe in
humans. Here, we provide evidence that exposure of human skin fibroblasts to a Radio Electric Asymmetric
Conveyer (REAC), an innovative device delivering radio electric conveyed fields at a radiofrequency of 2.4 GHz,
afforded remarkable commitment toward cardiac, neuronal, and skeletal muscle lineages. REAC induced the
transcription of tissue-restricted genes, including Mef2c, Tbx5, GATA4, Nkx2.5, and prodynorphin for cardiac
reprogramming, as well as myoD, and neurogenin 1 for skeletal myogenesis and neurogenesis, respectively.
Conversely, REAC treatment elicited a biphasic effect on a number of stemness-related genes, leading to early
transcriptional increase of Oct4, Sox2, cMyc, Nanog, and Klf4 within 6–20 h, followed by a downregulation at
later times. The REAC action bypassed a persistent reprogramming toward an induced pluripotent stem celllike
state and involved the transcriptional induction of the NADPH oxidase subunit Nox4. Our results show for
the first time the feasibility of using a physical stimulus to afford the expression of pluripotentiality in human
adult somatic cells up to the attainment of three major target lineages for regenerative medicine.